02 - Privacy-First Setup Guide
02 - Privacy-First Setup Guide
Section titled β02 - Privacy-First Setup Guideβπ 100% Local Mode - Zero Cloud Dependencies
β±οΈ Time Estimate: 20-30 minutes
π What Youβll Learn: How to set up Selfoss with complete local processing using Ollama and Whisper.cpp
Table of Contents
Section titled βTable of Contentsβ- Why Choose 100% Local Mode?
- Prerequisites
- Installing Ollama
- Downloading Whisper.cpp Models
- Configuring Selfoss
- Testing Your Setup
- Understanding Model Trade-offs
- Disk Space Requirements
- Troubleshooting
Why Choose 100% Local Mode?
Section titled βWhy Choose 100% Local Mode?ββ Benefits
Section titled ββ Benefitsβ| Feature | Local Mode | Cloud Mode |
|---|---|---|
| Privacy | π Complete - data never leaves your device | β οΈ Data sent to AI providers |
| Cost | β Free forever (after initial setup) | π° Pay-per-use API costs |
| Internet | β Works offline | β Requires connection |
| Data Retention | β No external storage | β οΈ Stored by providers temporarily |
| Speed | β±οΈ Moderate (depends on hardware) | β‘ Fast (cloud GPUs) |
| Setup | π§ Requires installation | β¨ Just need API keys |
π― Perfect For:
Section titled βπ― Perfect For:β- πΌ Confidential business meetings
- π₯ Healthcare discussions (HIPAA compliance)
- π° Financial planning sessions
- π Security-sensitive environments
- π Offline or low-connectivity scenarios
- π Cost-conscious users with high volume
Prerequisites
Section titled βPrerequisitesβHardware Requirements
Section titled βHardware RequirementsβMinimum:
- CPU: Quad-core processor (Intel i5 or AMD equivalent)
- RAM: 8GB (16GB recommended)
- Storage: 10GB free space for models
- GPU: Optional (speeds up processing significantly)
Recommended for Best Performance:
- CPU: 8+ cores
- RAM: 16GB+
- GPU: NVIDIA GPU with 6GB+ VRAM (for GPU acceleration)
- Storage: SSD with 20GB+ free space
π‘ Pro Tip: GPU acceleration can reduce transcription time by 5-10x. If you have an NVIDIA GPU, make sure to install CUDA drivers.
Installing Ollama
Section titled βInstalling OllamaβOllama provides the local LLM infrastructure for text analysis.
Windows
Section titled βWindowsβ-
Download Ollama:
- Visit https://ollama.com/download
- Download the Windows installer
-
Install:
Terminal window # Run the downloaded installer# Follow the on-screen instructions -
Verify Installation:
Terminal window ollama --version# Should output: ollama version x.x.x -
Pull Required Models:
Terminal window # For text analysis (required)ollama pull llama3.1:latest# For transcription (required)ollama pull whisper:base# Optional: Larger models for better accuracyollama pull llama3.1:70bollama pull whisper:large
β±οΈ Download Time: 5-15 minutes per model (depending on internet speed)
-
Download Ollama:
Terminal window # Visit https://ollama.com/download# Download the macOS installer (.dmg) -
Install:
- Open the
.dmgfile - Drag Ollama to Applications
- Launch Ollama from Applications
- Open the
-
Verify Installation:
Terminal window ollama --version -
Pull Required Models:
Terminal window ollama pull llama3.1:latestollama pull whisper:base
-
Install via Script:
Terminal window curl -fsSL https://ollama.com/install.sh | sh -
Verify Installation:
Terminal window ollama --version -
Start Ollama Service:
Terminal window # Start as servicesudo systemctl start ollama# Enable on bootsudo systemctl enable ollama -
Pull Required Models:
Terminal window ollama pull llama3.1:latestollama pull whisper:base
Testing Ollama
Section titled βTesting Ollamaβ# Test text generationollama run llama3.1:latest "Hello, how are you?"
# Test transcription (requires audio file)# Ollama will be tested via Selfoss interfaceβ Success: If you see a response, Ollama is working!
Downloading Whisper.cpp Models
Section titled βDownloading Whisper.cpp ModelsβWhisper.cpp provides local audio transcription without external APIs.
Understanding Whisper Models
Section titled βUnderstanding Whisper Modelsβ| Model | Size | Speed | Accuracy | Best For |
|---|---|---|---|---|
| tiny.en | ~75MB | β‘β‘β‘ Very Fast | ββ Basic | Quick notes, clear audio |
| base.en | ~140MB | β‘β‘ Fast | βββ Good | General meetings, standard quality |
| small.en | ~460MB | β‘ Moderate | ββββ Very Good | Professional meetings, important content |
| medium.en | ~1.5GB | π’ Slow | βββββ Excellent | High-accuracy needs, technical content |
| large-v3 | ~3GB | π’π’ Very Slow | βββββ Best | Critical transcripts, noisy audio |
π‘ Recommendation: Start with base.en for the best balance of speed and accuracy.
Installing Whisper.cpp (via Ollama)
Section titled βInstalling Whisper.cpp (via Ollama)βThe easiest way is to use Ollamaβs Whisper integration:
# Download recommended modelollama pull whisper:base
# Optional: Download other sizesollama pull whisper:tiny # Fastestollama pull whisper:small # Better accuracyollama pull whisper:medium # High accuracyollama pull whisper:large # Best accuracyManual Whisper.cpp Installation (Advanced)
Section titled βManual Whisper.cpp Installation (Advanced)βIf you want to use Whisper.cpp directly (without Ollama):
Windows/macOS/Linux:
- Download models from Hugging Face
- Place in:
~/.cache/whisper/(Linux/macOS) or%USERPROFILE%\.cache\whisper\(Windows)
Configuring Selfoss
Section titled βConfiguring SelfossβNow configure Selfoss to use your local setup.
Step 1: Open Settings
Section titled βStep 1: Open Settingsβ- Launch Selfoss
- Click βοΈ Settings in the header
- Navigate to LLM & Processing section
Step 2: Configure Transcription Provider
Section titled βStep 2: Configure Transcription ProviderβFor Audio β Text (Transcription):
- Provider: Select
Ollama - Model: Select
whisper:base(or your chosen model) - Ollama Endpoint: Leave as
http://localhost:11434(default) - API Key: Leave empty (not needed for local)
ββββββββββββββββββββββββββββββββββββββββ Transcription LLM Settings ββββββββββββββββββββββββββββββββββββββββ€β Provider: [Ollama βΌ] ββ Model: [whisper:base βΌ] ββ Endpoint: http://localhost:11434ββ API Key: (leave empty) ββββββββββββββββββββββββββββββββββββββββStep 3: Configure Analysis Provider
Section titled βStep 3: Configure Analysis ProviderβFor Text β Insights (Analysis):
- Provider: Select
Ollama - Model: Select
llama3.1:latest - Ollama Endpoint: Leave as
http://localhost:11434 - API Key: Leave empty
ββββββββββββββββββββββββββββββββββββββββ Analysis LLM Settings ββββββββββββββββββββββββββββββββββββββββ€β Provider: [Ollama βΌ] ββ Model: [llama3.1:latest βΌ] ββ Endpoint: http://localhost:11434ββ API Key: (leave empty) ββββββββββββββββββββββββββββββββββββββββStep 4: Enable Automation (Optional)
Section titled βStep 4: Enable Automation (Optional)βToggle these settings for convenience:
- β Auto-transcribe after recording: Automatically process audio
- β Auto-analyze after transcription: Automatically generate insights
β οΈ Note: Auto-analyze will start immediately after transcription completes.
Step 5: Save Settings
Section titled βStep 5: Save SettingsβClick βSave Settingsβ at the bottom of the page.
β Success: Youβll see a confirmation toast notification.
Testing Your Setup
Section titled βTesting Your SetupβTest 1: Check Ollama Connection
Section titled βTest 1: Check Ollama Connectionβ- Go to Settings β LLM & Processing
- Verify you see your models listed
- Endpoint should show
http://localhost:11434
β Success: Models are loaded and ready.
Test 2: Record and Transcribe
Section titled βTest 2: Record and Transcribeβ- Create a test project
- Click the microphone icon π€
- Record a short message (10-15 seconds)
- Stop recording
- Wait for auto-transcription (or click βTranscribe Audioβ)
β±οΈ Expected Time:
- Whisper tiny: ~5-10 seconds
- Whisper base: ~15-30 seconds
- Whisper small: ~30-60 seconds
β Success: You see transcribed text in the transcript view.
Test 3: Analyze Transcript
Section titled βTest 3: Analyze Transcriptβ- Upload a test transcript file (.txt)
- Click βStart Analysisβ
- Wait for processing
β±οΈ Expected Time:
- Short transcript (1 page): ~10-20 seconds
- Medium transcript (5 pages): ~30-60 seconds
- Long transcript (20+ pages): 2-5 minutes
β Success: You see decisions, actions, and concepts visualized.
Understanding Model Trade-offs
Section titled βUnderstanding Model Trade-offsβTranscription Models
Section titled βTranscription ModelsβWhisper Tiny (75MB)
- β Fastest processing (real-time capable)
- β Minimal disk space
- β May miss technical terms
- β Struggles with accents
- Use for: Quick voice notes, clear audio
Whisper Base (140MB) β Recommended
- β Good balance of speed and accuracy
- β Handles most accents well
- β Reasonable disk space
- Use for: General meetings, standard transcription
Whisper Small (460MB)
- β Excellent accuracy
- β Better with technical terminology
- β Slower processing (3-4x base)
- Use for: Important meetings, professional content
Whisper Large (3GB)
- β Best possible accuracy
- β Handles noisy audio well
- β Very slow (10x base)
- β Large disk space required
- Use for: Critical transcripts only
Analysis Models
Section titled βAnalysis ModelsβLlama 3.1 (4GB)
- β Good general-purpose model
- β Fast inference
- β Handles most business content
- Use for: Standard meeting analysis
Llama 3.1 70B (40GB)
- β State-of-the-art accuracy
- β Better reasoning
- β Requires 48GB+ RAM
- β Much slower processing
- Use for: Complex strategic discussions
π‘ Pro Tip: Use base for transcription and llama3.1 for analysis. This gives you the best performance/quality balance for most use cases.
Disk Space Requirements
Section titled βDisk Space RequirementsβBase Setup (Minimum)
Section titled βBase Setup (Minimum)βOllama: ~500MBwhisper:base: ~140MBllama3.1:latest: ~4GBβββββββββββββββββββββββββββββTotal: ~5GBRecommended Setup
Section titled βRecommended SetupβOllama: ~500MBwhisper:base: ~140MBwhisper:small: ~460MBllama3.1:latest: ~4GBβββββββββββββββββββββββββββββTotal: ~5.5GBFull Setup (All Models)
Section titled βFull Setup (All Models)βOllama: ~500MBwhisper:tiny: ~75MBwhisper:base: ~140MBwhisper:small: ~460MBwhisper:medium: ~1.5GBllama3.1:latest: ~4GBllama3.1:70b: ~40GBβββββββββββββββββββββββββββββTotal: ~47GBAudio Recording Storage
Section titled βAudio Recording StorageβRecordings are stored in:
- Windows:
C:\Users\{Username}\AppData\Roaming\selfoss\audio_recordings\ - macOS:
~/Library/Application Support/selfoss/audio_recordings/ - Linux:
~/.local/share/selfoss/audio_recordings/
Estimate: ~1MB per minute of audio (WebM format)
- 1 hour meeting: ~60MB
- 10 hours: ~600MB
- 100 hours: ~6GB
π‘ Pro Tip: Set up periodic cleanup of old recordings to save space. See 09_DATA_MANAGEMENT_GUIDE.md.
Troubleshooting
Section titled βTroubleshootingβOllama Issues
Section titled βOllama IssuesββCannot connect to Ollamaβ error
# Check if Ollama is runningollama list
# Restart Ollama (Windows)# Close from system tray and relaunch
# Restart Ollama (Linux)sudo systemctl restart ollama
# Check endpointcurl http://localhost:11434/api/versionModels not appearing in Selfoss
# List installed modelsollama list
# Pull missing modelsollama pull whisper:baseollama pull llama3.1:latestSlow transcription on CPU
- β Close other applications to free RAM
- β Use smaller model (tiny or base)
- β Consider GPU acceleration
Whisper.cpp Issues
Section titled βWhisper.cpp IssuesββModel not foundβ error
- β
Verify model is downloaded:
ollama list - β
Re-download:
ollama pull whisper:base - β Restart Ollama service
Empty transcription results
- β Check audio file size (must be > 1KB)
- β Verify audio duration (minimum 1 second)
- β Test with a longer recording (30+ seconds)
- β Try a different model
Very slow processing
- β Use a smaller model (tiny or base)
- β Close other applications
- β Check CPU usage in task manager
- β Consider upgrading hardware
Performance Optimization
Section titled βPerformance OptimizationβSpeed up transcription:
- Use
whisper:tinyfor quick drafts - Enable GPU acceleration (NVIDIA GPUs only)
- Close resource-intensive applications
- Upgrade RAM if using large models
Speed up analysis:
- Use standard
llama3.1:latest(not 70B) - Process shorter transcripts
- Disable auto-analyze for batch processing
- Consider cloud provider for complex analysis
Next Steps
Section titled βNext Stepsβπ Congratulations! Youβve set up 100% local processing.
Recommended Actions:
Section titled βRecommended Actions:β- π Test with real meetings - Record or upload actual transcripts
- β‘ Optimize models - Experiment with different sizes for your hardware
- πΎ Set up backups β 09_DATA_MANAGEMENT_GUIDE.md
- π Try hybrid mode - Use local transcription + cloud analysis β 13_ADVANCED_WORKFLOWS_GUIDE.md
Advanced Topics:
Section titled βAdvanced Topics:β- GPU acceleration for faster processing
- Custom model tuning for domain-specific accuracy
- Batch processing scripts for multiple files
- Docker deployment for isolated environments
π Your data, your device, your control.