Skip to content

13 - Advanced Workflows Guide

⚑ Power User Features & Optimization Strategies
⏱️ Time Estimate: 20 minutes
πŸ“‹ What You’ll Learn: Hybrid setups, cost optimization, batch processing, power user techniques



Combine local privacy with cloud performance strategically.

Setup:

Transcription: Ollama (whisper:base)
Analysis: OpenAI (gpt-4o-mini)

Benefits:

  • πŸ”’ Audio never leaves device (max privacy)
  • πŸ’° Save transcription costs (~$0.36/hour)
  • ⚑ Fast cloud analysis (~10-20 seconds)
  • πŸ“Š High-quality insights

Use cases:

  • Confidential meeting audio
  • Cost-conscious with high volume
  • Privacy regulations (HIPAA, GDPR)

Cost analysis:

1-hour meeting:
- Transcription: Free (local)
- Analysis: ~$0.02-0.05 (cloud)
- Total: ~$0.02-0.05
vs Full Cloud:
- Transcription: $0.36
- Analysis: $0.02-0.05
- Total: $0.38-0.41
Savings: 90%+ on audio transcription

Setup:

Transcription: OpenAI (whisper-1)
Analysis: Ollama (llama3.1)
Auto-analyze: Disabled

Benefits:

  • ⚑ Fast transcription (~30 seconds)
  • πŸ”’ Analysis stays local (no insights to cloud)
  • 🧐 Manual review before processing
  • πŸ’° Free analysis

Use cases:

  • Fast transcript turnaround needed
  • Sensitive insights (strategies, plans)
  • Review before AI processing

Cost analysis:

1-hour meeting:
- Transcription: $0.36 (fast cloud)
- Analysis: Free (local)
- Total: $0.36
Plus: Control over what gets analyzed

Development:

Transcription: Ollama (whisper:base)
Analysis: Ollama (llama3.1)

Production (important meetings):

Transcription: OpenAI (whisper-1)
Analysis: OpenAI (gpt-4o)

Benefits:

  • πŸ§ͺ Free testing and iteration
  • ⭐ Best quality for important content
  • πŸ’° Spend only where it matters

Workflow:

1. Test workflow with Ollama (free)
2. Verify prompt quality
3. Switch to cloud for final version
4. Get best results

Principle: Use local for routine, cloud for critical

Implementation:

Create two project categories:
πŸ“ Routine (Local Processing)
└─ Daily standups
└─ Internal team syncs
└─ Voice notes
πŸ“ Critical (Cloud Processing)
└─ Executive meetings
└─ Client presentations
└─ Strategic planning

Savings example:

Routine (20 hours/month):
- Local: Free
- Cloud: $15.20
Critical (5 hours/month):
- Cloud: $3.80
Total monthly cost: $3.80
vs All Cloud: $19.00
Savings: 80%

Choose models by importance:

Tier 1: Critical

Transcription: OpenAI Whisper
Analysis: GPT-4o or Gemini 1.5 Pro
Cost: ~$0.40/hour audio
Quality: ⭐⭐⭐⭐⭐

Tier 2: Important

Transcription: OpenAI Whisper
Analysis: GPT-4o-mini or Gemini Flash
Cost: ~$0.38/hour
Quality: ⭐⭐⭐⭐

Tier 3: Routine

Transcription: Ollama Whisper
Analysis: Gemini Flash
Cost: ~$0.01/hour
Quality: ⭐⭐⭐

Reduce token usage:

Before Processing:
──────────────────
"Um, so like, you know, we need to, uh,
approve the budget, you know?"
β†’ 15 tokens
After Cleanup:
──────────────
"We need to approve the budget."
β†’ 6 tokens
Savings: 60% token reduction

Tools:

  • Remove filler words (um, uh, like)
  • Consolidate repeated information
  • Extract key sections only
  • Use summarization first (for very long)

Schedule processing during off-peak:

1. Record during day (no processing)
2. Queue all recordings
3. Process overnight (local Ollama)
4. Review results next morning
Benefits:
- Free processing (local)
- No API rate limits
- Batch efficiency
- Results ready by morning

Use separate keys for monitoring:

Development Key:
- Testing and iteration
- Lower spending limit ($10/month)
- Alert if exceeded
Production Key:
- Important transcripts only
- Higher spending limit ($100/month)
- Separate billing tracking

Scenario: 10 hours of meetings per week

Process:

Monday-Friday:
1. Record all meetings (auto-transcribe: ON)
2. Transcripts accumulate
3. No analysis yet
Friday evening:
4. Select all week's transcripts
5. Batch analyze with Ollama (free)
6. Review over weekend

Efficiency:

  • 10 transcriptions: 20-50 minutes (Ollama)
  • Run overnight on Friday
  • Zero cost
  • Full week insights ready

Scenario: Import 20 historical transcripts

Process:

1. Prepare all files:
- Convert to .txt or .docx
- Clean formatting
- Name consistently
2. Upload in sequence:
- Drag-drop multiple files (planned)
- Or upload one-by-one
- Let queue process
3. Monitor progress:
- Check processing status
- Handle errors individually
- Export results

Scenario: Improve old transcripts with better models

Process:

1. Identify candidates:
- Search: date:2024-01 (old month)
- Filter: processed_with:gpt-3.5-turbo
2. Export originals (backup):
- Select all
- Export as ZIP
3. Reprocess batch:
- Select all
- Right-click β†’ "Reprocess with..."
- Choose gpt-4o-mini
4. Compare results:
- Side-by-side comparison
- Keep better version

Monitor and manage background processing.

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Job Queue Status β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ Active Jobs: 3 β”‚
β”‚ Queued: 7 β”‚
β”‚ Completed: 45 β”‚
β”‚ Failed: 2 β”‚
β”‚ β”‚
β”‚ Current: β”‚
β”‚ β€’ Transcribing meeting_042.webm β”‚
β”‚ Progress: 67% (2min remaining) β”‚
β”‚ β”‚
β”‚ β€’ Analyzing transcript_031.txt β”‚
β”‚ Progress: 34% (30s remaining) β”‚
β”‚ β”‚
β”‚ [Pause Queue] [Clear Completed] β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Pause processing:

  • Finish current jobs
  • Hold new jobs in queue
  • Resume when ready

Priority adjustment: (Planned)

  • Move important jobs to front
  • Delay low-priority jobs
  • Manual queue reordering

Cancel jobs:

  • Remove from queue
  • Stop in-progress jobs
  • Clean up partial results

Failed jobs auto-retry:

Attempt 1: Immediate
Attempt 2: Wait 30 seconds
Attempt 3: Wait 2 minutes
Attempt 4: Wait 5 minutes
Final: Mark as failed

Retry conditions:

  • Network timeouts
  • Transient API errors
  • Rate limit exceeded

Non-retryable:

  • Invalid API keys
  • Malformed files
  • Quota exceeded

ShortcutAction
Ctrl/Cmd + KOpen global search
Ctrl/Cmd + BToggle sidebar
Ctrl/Cmd + ,Open settings (planned)
Ctrl/Cmd + NNew project (planned)
Ctrl/Cmd + UUpload transcript
/Focus search
ShortcutAction
↑ ↓Navigate lists
EnterSelect/open
EscClose modal/cancel
TabNext field
Shift + TabPrevious field
ShortcutAction
Ctrl/Cmd + ZUndo
Ctrl/Cmd + YRedo
Ctrl/Cmd + SSave (planned)
EnterSave edit
EscCancel edit
ShortcutAction
Ctrl/Cmd + RStart recording
Ctrl/Cmd + PPause recording
Ctrl/Cmd + Shift + RStop recording

Via Settings (Planned):

Settings β†’ Keyboard Shortcuts
↓
Customize any action
↓
Assign key combination

Manage how you receive feedback.

Success toasts:

βœ… Transcript uploaded successfully
βœ… Processing complete
βœ… Settings saved

Error toasts:

❌ Failed to save changes
❌ API key invalid
❌ Connection timeout

Info toasts:

ℹ️ Processing in background
ℹ️ Update available
ℹ️ Low disk space warning
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Notification Preferences β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ β˜‘ Show success messages β”‚
β”‚ β˜‘ Show error messages β”‚
β”‚ β˜‘ Show info messages β”‚
β”‚ ☐ Show processing updates β”‚
β”‚ β”‚
β”‚ Duration: [3 seconds β–Ό] β”‚
β”‚ Position: [Top Right β–Ό] β”‚
β”‚ Sound: [Enabled β–Ό] β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Click to navigate:

  • Click success toast β†’ Go to transcript
  • Click error toast β†’ Open relevant settings
  • Click warning β†’ View details

Dismiss:

  • Click Γ— to dismiss
  • Auto-dismiss after 3-5 seconds
  • Swipe to dismiss (mobile)

Personalize your visualization layout.

Executive Dashboard:

1. Action Matrix (what needs doing)
2. Sentiment Arc (how it went)
3. Decision Flowchart (what was decided)
4. Participation Heatmap (who engaged)
5. Concept Mind Map (what was discussed)

Project Manager View:

1. Action Matrix (task tracking)
2. Participation Heatmap (team engagement)
3. Decision Flowchart (dependencies)
4. Concept Mind Map (scope)
5. Sentiment Arc (team morale)

Analyst View:

1. Sentiment Arc (emotional dynamics)
2. Participation Heatmap (speaking patterns)
3. Concept Mind Map (topic analysis)
4. Decision Embedding (decision clusters)
5. Action Matrix (deliverables)

Different layouts for different projects:

Client Meetings:
- Focus on actions and decisions
- Hide participation (privacy)
Team Retrospectives:
- Emphasize sentiment and participation
- Show concept exploration
Strategy Sessions:
- Feature decision embedding
- Highlight concept relationships

Fine-tuned domain models:

Terminal window
# Create custom model
ollama create meeting-analyzer -f Modelfile
# Modelfile contents:
FROM llama3.1:latest
PARAMETER temperature 0.7
SYSTEM You are an expert meeting analyzer...

Add to Selfoss:

Settings β†’ LLM & Processing
↓
Manage Custom Models
↓
Provider: Ollama
Model: meeting-analyzer
↓
[Add Model]

Specialized extraction:

Template: Technical Meeting
- Extract: Technical decisions, specs, blockers
- Ignore: Social chatter, off-topic
Template: Sales Call
- Extract: Objections, commitments, next steps
- Ignore: Small talk, generic discussion

πŸŽ‰ You’re now a Selfoss power user!

  1. πŸ”„ Implement hybrid setup - Balance privacy/cost/speed
  2. πŸ’° Optimize spending - Track and reduce costs
  3. ⚑ Automate workflows - Batch processing
  4. ⌨️ Learn all shortcuts - Maximum efficiency
  5. 🎨 Customize widgets - Perfect layout
  • πŸ“ Share your workflows
  • πŸ› Report issues
  • πŸ’‘ Suggest features
  • 🀝 Help others

⚑ Work smarter, not harder.